Mean= Average,
Mode: Value of observation(x) which occurs more often( i.e observation of max frequency).
Median: n/2 th or (n+1)/2 th observation for sum of freq if its even & observation for sum of freq odd observations
Exercise 14.1
1. A survey was conducted by a group of students as a part of their environment awareness program, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.
Number of Plants 0-2 2-4 4-6 6-8 8-10 10-12 12-14
Number of Houses 1 2 1 5 6 2 3
Which method did you use for finding the mean, and why?
Answer:
In order to find the mean value, we will use direct method because the numerical value of fi and xi are small. Find the midpoint of the given interval using the formula.
Midpoint (xi) = (upper limit + lower limit)/2
No. of plants (Class interval) | No. of houses Frequency (fi) | Mid-point (xi) | fixi |
0-2 | 1 | 1 | 1 |
2-4 | 2 | 3 | 6 |
4-6 | 1 | 5 | 5 |
6-8 | 5 | 7 | 35 |
8-10 | 6 | 9 | 54 |
10-12 | 2 | 11 | 22 |
12-14 | 3 | 13 | 39 |
| Sum fi = 20 |
| Sum fixi = 162 |
The formula to find the mean is:
Mean = x̄ = ∑fi xi /∑fi
= 162/20
= 8.1
Therefore, the mean number of plants per house is 8.1
2. Consider the following distribution of daily wages of 50 workers of a factory.
Daily wages (in Rs.) | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Find the mean daily wages of the workers of the factory by using an appropriate method. Answer:
Find the midpoint of the given interval using the formula.
Midpoint (xi) = (upper limit + lower limit)/2
In this case, the value of mid-point (xi) is very large, so let us assume the mean value, A = 150 and class interval is h = 20.
So, ui = (xi - A)/h = ui = (xi - 150)/20 Substitute and find the values as follows:
Daily wages (Class interval) | Number of workers frequency (fi) |
Mid-point (xi) | ui = (xi - 150)/20 | fiui |
100-120 | 12 | 110 | -2 | -24 |
120-140 | 14 | 130 | -1 | -14 |
140-160 | 8 | 150 | 0 | 0 |
160-180 | 6 | 170 | 1 | 6 |
180-200 | 10 | 190 | 2 | 20 |
Total | Sum fi = 50 |
|
| Sum fiui = -12 |
So, the formula to find out the mean is:
Mean = x̄ = A + h∑fiui /∑fi =150 + (20 × -12/50) = 150 - 4.8 = 145.20 Thus, mean daily wage of the workers = Rs. 145.20
3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs 18. Find the missing frequency f.
To find out the missing frequency, use the mean formula.
Here, the value of mid-point (xi) mean x̄ = 18
Class interval | Number of children (fi) | Mid-point (xi) | fixi |
11-13 | 7 | 12 | 84 |
13-15 | 6 | 14 | 84 |
15-17 | 9 | 16 | 144 |
17-19 | 13 | 18 = A | 234 |
19-21 | f | 20 | 20f |
21-23 | 5 | 22 | 110 |
23-25 | 4 | 24 | 96 |
Total | fi = 44+f |
| Sum fixi = 752+20f |
The mean formula is
Mean = x̄ = ∑fixi /∑fi = (752+20f)/(44+f)
Now substitute the values and equate to find the missing frequency (f)
⇒ 18 = (752+20f)/(44+f)
⇒ 18(44+f) = (752+20f)
⇒ 792+18f = 752+20f
⇒ 792+18f = 752+20f
⇒ 792 - 752 = 20f - 18f
⇒ 40 = 2f
⇒ f = 20
So, the missing frequency, f = 20.
4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarized as follows. Find the mean heart beats per minute for these women, choosing a suitable method.
Number of heart beats per minute | 65-68 | 68-71 | 71-74 | 74-77 | 77-80 | 80-83 | 83-86 |
Number of women | 2 | 4 | 3 | 8 | 7 | 4 | 2 |
Answer:
From the given data, let us assume the mean as A = 75.5 xi = (Upper limit + Lower limit)/2
Class size (h) = 3
Now, find the ui and fiui as follows:
Class Interval | Number of women (fi) | Mid-point (xi) | ui = (xi - 75.5)/h | fiui |
65-68 | 2 | 66.5 | -3 | -6 |
68-71 | 4 | 69.5 | -2 | -8 |
71-74 | 3 | 72.5 | -1 | -3 |
74-77 | 8 | 75.5 | 0 | 0 |
77-80 | 7 | 78.5 | 1 | 7 |
80-83 | 4 | 81.5 | 3 | 8 |
83-86 | 2 | 84.5 | 3 | 6 |
| Sum fi= 30 |
|
| Sum fiui = 4 |
Mean = x̄ = A + h∑fiui /∑fi
= 75.5 + 3×(4/30)
= 75.5 + 4/10
= 75.5 + 0.4
= 75.9
Therefore, the mean heart beats per minute for these women is 75.9
5. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.
Number of mangoes | 50-52 | 53-55 | 56-58 | 59-61 | 62-64 |
Number of boxes | 15 | 110 | 135 | 115 | 25 |
Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?
Answer:
Since, the given data is not continuous so we add 0.5 to the upper limit and subtract 0.5 from the lower limit as the gap between two intervals are 1
Here, assumed mean (A) = 57
Class size (h) = 3
Here, the step deviation is used because the frequency values are big.
Class Interval | Number of boxes (fi) | Mid-point (xi) | di = xi - A | fidi |
49.5-52.5 | 15 | 51 | -6 | 90 |
52.5-55.5 | 110 | 54 | -3 | -330 |
55.5-58.5 | 135 | 57 = A | 0 | 0 |
58.5-61.5 | 115 | 60 | 3 | 345 |
61.5-64.5 | 25 | 63 | 6 | 150 |
| Sum fi = 400 |
|
| Sum fidi = 75 |
The formula to find out the Mean is:
Mean = x̄ = A +h ∑fidi /∑fi
= 57 + 3(75/400)
= 57 + 0.1875
= 57.19
Therefore, the mean number of mangoes kept in a packing box is 57.19
6. The table below shows the daily expenditure on food of 25 households in a locality. Find the mean daily expenditure on food by a suitable method.
Find the midpoint of the given interval using the formula.
Midpoint (xi) = (upper limit + lower limit)/2
Let is assume the mean (A) = 225
Class size (h) = 50
Class Interval | Number of households (fi) | Mid-point (xi) | di = xi - A | ui = di/50 | fiui |
100-150 | 4 | 125 | -100 | -2 | -8 |
150-200 | 5 | 175 | -50 | -1 | -5 |
200-250 | 12 | 225 | 0 | 0 | 0 |
250-300 | 2 | 275 | 50 | 1 | 2 |
300-350 | 2 | 325 | 100 | 2 | 4 |
| Sum fi = 25 |
|
|
| Sum fiui = -7 |
Mean = x̄ = A +h∑fiui /∑fi
= 225+50(-7/25)
= 225-14
= 211
Therefore, the mean daily expenditure on food is 211
7. To find out the concentration of SO2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:
Concentration of SO2 ( in ppm) | Frequency |
0.00 - 0.04 | 4 |
0.04 - 0.08 | 9 |
0.08 - 0.12 | 9 |
0.12 - 0.16 | 2 |
0.16 - 0.20 | 4 |
0.20 - 0.24 | 2 |
Find the mean concentration of SO2 in the air.
Answer:
To find out the mean, first find the midpoint of the given frequencies as follows:
Concentration of SO2 (in ppm) | Frequency (fi) | Mid-point (xi) | fixi |
0.00-0.04 | 4 | 0.02 | 0.08 |
0.04-0.08 | 9 | 0.06 | 0.54 |
0.08-0.12 | 9 | 0.10 | 0.90 |
0.12-0.16 | 2 | 0.14 | 0.28 |
0.16-0.20 | 4 | 0.18 | 0.72 |
0.20-0.24 | 2 | 0.20 | 0.40 |
Total | Sum fi = 30 |
| Sum (fixi) = 2.96 |
The formula to find out the mean is
Mean = x̄ = ∑fixi /∑fi
= 2.96/30
= 0.099 ppm
Therefore, the mean concentration of SO2 in air is 0.099 ppm.
8. A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Number of days | 0-6 | 6-10 | 10-14 | 14-20 | 20-28 | 28-38 | 38-40 | |
Number of students | 11 | 10 | 7 | 4 | 4 | 3 | 1 | |
Answer: |
| |||||||
Find the midpoint of the given interval using the formula.
Midpoint (xi) = (upper limit + lower limit)/2
Class interval | Frequency (fi) | Mid-point (xi) | fixi |
0-6 | 11 | 3 | 33 |
6-10 | 10 | 8 | 80 |
10-14 | 7 | 12 | 84 |
14-20 | 4 | 17 | 68 |
20-28 | 4 | 24 | 96 |
28-38 | 3 | 33 | 99 |
38-40 | 1 | 39 | 39 |
| Sum fi = 40 |
| Sum fixi = 499 |
The mean formula is, Mean = x̄ = ∑fixi /∑fi
= 499/40
= 12.48 days
Therefore, the mean number of days a student was absent = 12.48.
9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.
Literacy rate (in %) | 45-55 | 55-65 | 65-75 | 75-85 | 85-98 | |
Number of cities | 3 | 10 | 11 | 8 | 3 | |
Answer: |
|
|
|
|
|
|
Find the midpoint of the given interval using the formula.
Midpoint (xi) = (upper limit + lower limit)/2
In this case, the value of mid-point (xi) is very large, so let us assume the mean value, A = 70 and class interval is h = 10.
So, ui = (xi-A)/h = ui = (xi-70)/10
Substitute and find the values as follows:
Class Interval | Frequency (fi) | (xi) | di = xi - a | ui = di/h | fiui |
45-55 | 3 | 50 | -20 | -2 | -6 |
55-65 | 10 | 60 | -10 | -1 | -10 |
65-75 | 11 | 70 | 0 | 0 | 0 |
75-85 | 8 | 80 | 10 | 1 | 8 |
85-95 | 3 | 90 | 20 | 2 | 6 |
| Sum fi = 35 |
|
|
| Sum fiui = -2 |
So, Mean = x̄ = A+(∑fiui /∑fi)×h
= 70+(-2/35)×10
= 69.42
Therefore, the mean literacy part = 69.42
Exercise 14.2
1. The following table shows the ages of the patients admitted in a hospital during a year: Age (in years) 5-15 15-25 25-35 35-45 45-55 55-65
Number of patients 6 11 21 23 14 5
Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.
Answer:
greatest frequency = 23, so the modal class = 35 –
45, l = 35,
class width (h) = 10,
f1 = 23,
f0 = 21 and f2 = 14
The formula to find the mode is
Mode = l+ [(f1-f0)/(2f1-f0-f2)]×h
Substitute the values in the formula, we get
Mode = 35+[(23-21)/(46-21-14)]×10
Mode = 35+(20/11) =
35+1.8
Mode = 36.8 year
So the mode of the given data = 36.8 year Calculation
of Mean:
First find the midpoint using the formula, xi =
(upper limit +lower limit)/2
Class Interval | Frequency (fi) | Mid-point (xi) | fixi |
5-15 | 6 | 10 | 60 |
15-25 | 11 | 20 | 220 |
25-35 | 21 | 30 | 630 |
35-45 | 23 | 40 | 920 |
45-55 | 14 | 50 | 700 |
55-65 | 5 | 60 | 300 |
| Sum fi = 80 |
| Sum fixi = 2830 |
The mean formula is
Mean = x̄ = ∑fixi /∑fi
= 2830/80
= 35.37 years
Therefore, the mean of the given data = 35.37 years
2. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:
Lifetime (in hours) | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 10 | 35 | 52 | 61 | 38 | 29 |
Determine the modal lifetimes of the components.
Answer:
l=60
From the given data the modal class is 60–80. The frequencies are:
f1 = 61, f0 = 52, f2 = 38 and h =20 The
formula to find the mode is
Mode = l+
[(f1-f0)/(2f1-f0-f2)]×h
Substitute the values in the formula, we get
Mode =60+[(61-52)/(122-52-38)]×20
Mode = 60+((9 x 20)/32)
Mode = 60+(45/8) = 60+ 5.625
Therefore, modal lifetime of the components = 65.625 hours.
3. The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure:
Given data:
Modal class = 1500-2000,
l = 1500,
Frequencies:
f1 = 40 f0 = 24, f2 = 33 and
h = 500 Mode formula:
Mode = l+ [(f1-f0)/(2f1-f0-f2)]×h
Substitute the values in the formula, we get
Mode =1500+[(40-24)/(80-24-33)]×500
Mode = 1500+((16×500)/23)
Mode = 1500+(8000/23) = 1500 + 347.83
Therefore, modal monthly expenditure of the families =
Rupees 1847.83
Calculation for mean:
First find the midpoint using the formula, xi =(upper limit +lower limit)/2
Let us assume a mean, A be 2750
Class Interval | fi | xi | di = xi - a | ui = di/h | fiui |
1000-1500 | 24 | 1250 | -1500 | -3 | -72 |
1500-2000 | 40 | 1750 | -1000 | -2 | -80 |
2000-2500 | 33 | 2250 | -500 | -1 | -33 |
2500-3000 | 28 | 2750 | 0 | 0 | 0 |
3000-3500 | 30 | 3250 | 500 | 1 | 30 |
3500-4000 | 22 | 3750 | 1000 | 2 | 44 |
4000-4500 | 16 | 4250 | 1500 | 3 | 48 |
4500-5000 | 7 | 4750 | 2000 | 4 | 28 |
| fi = 200 |
|
|
| fiui = -35 |
The formula to calculate the mean,
Mean = x̄ = a +(∑fiui /∑fi)×h
Substitute the values in the given formula
= 2750+(-35/200)×500
= 2750-87.50
= 2662.50
So, the mean monthly expenditure of the families = Rupees 2662.50
4. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures
No of Students per teacher | Number of states / U.T |
15-20 | 3 |
20-25 | 8 |
25-30 | 9 |
30-35 | 10 |
35-40 | 3 |
40-45 | 0 |
45-50 | 0 |
50-55 | 2 |
Answer:
Given data:
Modal class = 30 – 35, l = 30,
Class width (h) = 5,
f1 = 10, f0 = 9 and f2 = 3 Mode Formula:
Mode = l+
[(f1-f0)/(2f1-f0-f2)]×h
Substitute the values in the given formula
Mode = 30+((10-9)/(20-9-3))×5
Mode = 30+(5/8) = 30+0.625
Mode = 30.625
Therefore, the mode of the given data = 30.625
Calculation of mean:
Find the midpoint using the formula, xi =(upper limit +lower limit)/2
Class Interval | Frequency (fi) | Mid-point (xi) | fixi |
15-20 | 3 | 17.5 | 52.5 |
20-25 | 8 | 22.5 | 180.0 |
25-30 | 9 | 27.5 | 247.5 |
30-35 | 10 | 32.5 | 325.0 |
35-40 | 3 | 37.5 | 112.5 |
40-45 | 0 | 42.5 | 0 |
45-50 | 0 | 47.5 | 0 |
50-55 | 2 | 52.5 | 105.5 |
| Sum fi = 35 |
| Sum fixi = 1022.5 |
Mean = x̄ = ∑fixi /∑fi
= 1022.5/35
= 29.2
Therefore, mean = 29.2
5. The given distribution shows the number of runs scored by some top batsmen of the world in one- day international cricket matches.
Answer:
Given data:
Modal class = 4000 – 5000,
l = 4000, class width (h) = 1000, f1 = 18, f0 = 4 and f2 = 9 Mode
Formula:
Mode = l+
[(f1-f0)/(2f1-f0-f2)]×h
Substitute the values
Mode = 4000+((18-4)/(36-4-9))×1000
Mode = 4000+(14000/23) = 4000+608.695
Mode = 4608.695
Mode = 4608.7 (approximately)
Thus, the mode of the given data is 4608.7 runs
6. A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarized it in the table given below. Find the mode of the data:
Class width (h) = 10, f1 = 20, f0 = 12 and f2 =
11
Mode = l+
[(f1-f0)/(2f1-f0-f2)]×h
Substitute the values
Mode = 40+((20-12)/(40-12-11))×10
Mode = 40 + (80/17) = 40 + 4.7 = 44.7
Thus, the mode of the given data is 44.7 cars
Exercise 14.3
Hence, the median class is 125-145 with cumulative frequency = 42
Where, l = 125, n = 68, Cf = 22, f = 20, h = 20
Median is calculated as follows:
Median= l+(n/2-cf)h/f
=125+((34−22)/20) × 20
=125+12 = 137
Therefore, median = 137
To calculate the mode: Modal class = 125-145, f1=20, f0=13, f2=14 & h = 20 Mode formula:
Mode = l+ [(f1-f0)/(2f1-f0-f2)]×h
Mode = 125 + ((20-13)/(40-13-14))×20
=125+(140/13)
=125+10.77
=135.77
Therefore, mode = 135.77

Mean=137.05
In this case, mean, median and mode are more/less equal in this distribution.
2. If the median of a distribution given below is 28.5 then, find the value of x & y.
Class Interval | Frequency |
0-10 | 5 |
10-20 | x |
20-30 | 20 |
30-40 | 15 |
40-50 | y |
50-60 | 5 |
Total | 60 |
Answer:
Given data, n = 60
Median of the given data = 28.5
Where, n/2 = 30
Median class is 20 – 30 with a cumulative frequency = 25+x
Lower limit of median class, l = 20, Cf = 5+x, f = 20 & h = 10
Median= l+(n/2-cf)h/f
Substitute the values
28.5=20+((30−5−x)/20) × 10
8.5 = (25 - x)/2
17 = 25-x
Therefore, x =8
Now, from cumulative frequency, we can identify the value of x + y as follows:
Since,
60=5+20+15+5+x+y
Now, substitute the value of x, to find y
60 = 5+20+15+5+8+y
y = 60-53 y = 7
Therefore, the value of x = 8 and y = 7.
3. The Life insurance agent found the following data for the distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to the persons whose age is 18 years onwards but less than the 60 years.
Age (in years) | Number of policy holder |
Below 20 | 2 |
Below 25 | 6 |
Below 30 | 24 |
Below 35 | 45 |
Below 40 | 78 |
Below 45 | 89 |
Below 50 | 92 |
Below 55 | 98 |
Below 60 | 100 |
Answer:
Class interval | Frequency | Cumulative frequency |
15-20 | 2 | 2 |
20-25 | 4 | 6 |
25-30 | 18 | 24 |
30-35 | 21 | 45 |
35-40 | 33 | 78 |
40-45 | 11 | 89 |
45-50 | 3 | 92 |
50-55 | 6 | 98 |
55-60 | 2 | 100 |
Given data: n = 100 and n/2 = 50
Median class = 35-45
Then, l = 35, cf = 45, f = 33 & h = 5
Median= l+(n/2-cf)h/f
Median = 35+((50-45)/33) × 5
= 35 + (5/33)5
= 35.75
Therefore, the median age = 35.75 years.
4. The lengths of 40 leaves in a plant are measured correctly to the nearest millimeter, and the data obtained is represented as in the following table:
Answer:
Since the data are not continuous reduce 0.5 in the lower limit and add 0.5 in the upper limit.
n = 40 and n/2 = 20 Median class = 144.5-153.5 then, l = 144.5, cf = 17, f = 12 & h = 9
Median= l+(n/2-cf)h/f
Median = 144.5+((20-17)/12)×9
= 144.5+(9/4)
= 146.75 mm
Therefore, the median length of the leaves = 146.75 mm.
5. The following table gives the distribution of a life time of 400 neon lamps.
Answer:
Lifetime (in hours) Number of lamps
Therefore, l = 3000, Cf = 130, f = 86 & h = 500
Median= l+(n/2-cf)h/f
Median = 3000 + ((200-130)/86) × 500
= 3000 + (35000/86)
= 3000 + 406.97
= 3406.97
Therefore, the median life time of the lamps = 3406.97 hours
6. In this 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in English alphabets in the surnames was obtained as follows:
Number of letters 1-4 4-7 7-10 10-13 13-16 16-19
Number of surnames 6 30 40 16 4 4
Determine the number of median letters in the surnames. Find the number of mean letters in the surnames and also, find the size of modal in the surnames.
Answer:
Therefore, l = 7, Cf = 36, f = 40 & h = 3
Median= l+(n/2-cf)h/f
Median = 7+((50-36)/40) × 3
Median = 7+42/40
Median=8.05
Calculate the Mode:
Modal class = 7-10,
Where, l = 7, f1 = 40, f0 = 30, f2 = 16 & h = 3
Mode = l+ [(f1-f0)/(2f1-f0-f2)]×h
Mode = 7+((40-30)/(2×40-30-16)) × 3
= 7+(30/34)
= 7.88
Therefore mode = 7.88
Calculate the Mean:
Class Interval | fi | xi | fixi |
1-4 | 6 | 2.5 | 15 |
4-7 | 30 | 5.5 | 165 |
7-10 | 40 | 8.5 | 340 |
10-13 | 16 | 11.5 | 184 |
13-16 | 4 | 14.5 | 51 |
16-19 | 4 | 17.5 | 70 |
| Sum fi = 100 |
| Sum fixi = 825 |
Mean = x̄ = ∑fi xi /∑fi
Mean = 825/100 = 8.25
Therefore, mean = 8.25
7. The distributions of below give a weight of 30 students of a class. Find the median weight of a student.
40-45 45-50 50-55 55-60 60-65 65-70 70-75
Median= l+(n/2-cf)h/f
Median = 55+((15-13)/6)×5
Median=55 + (10/6) = 55+1.666
Median =56.67
Therefore, the median weight of the students = 56.67
Exercise 14.4
1. The following distribution gives the daily income of 50 workers if a factory. Convert the distribution above to a less than type cumulative frequency distribution and draw its ogive.
Daily income in Rupees | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Answer
Convert the given distribution table to a less than type cumulative frequency distribution, we get
Daily income Frequency Cumulative Frequency
Less than 120 12 12
Less than 140 14 26
Less than 160 8 34
Less than 180 6 40
Less than 200 10 50
From the table plot the points corresponding to the ordered pairs such as (120, 12), (140, 26), (160, 34), (180, 40) and (200, 50) on graph paper and the plotted points are joined to get a smooth curve and the obtained curve is known as less than type curve
2.During the medical check-up of 35 students of a class, their weights were recorded as follows:
Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify the result by using the formula.
Answer:
From the given data, to represent the table in the form of graph, choose the upper limits of the class intervals are in x-axis and frequencies on y-axis by choosing the convenient scale. Now plot the points corresponding to the ordered pairs given by (38, 0), (40, 3), (42, 5), (44, 9),(46, 14), (48, 28), (50, 32) and (52, 35) on a graph paper an join them to get a smooth curve. The curve obtained is known as less than type.
Locate the point 17.5 on the y-axis and draw a line parallel to the x-axis cutting the curve at a point. From the point, draw a perpendicular line to the x-axis. The intersection point perpendicular to x-axis is the median of the given data. Now, to find the mode by making a table.
The class 46 – 48 has the maximum frequency, therefore, this is modal class
Here, l = 46, h = 2, f1= 14, f0= 5 and f2 = 4 The mode formula is given as:
Now, Mode =
Mode = l+ [(f1-f0)/(2f1-f0-f2)]×h = 46 + 0.95 = 46.95
Thus, mode is verified.
3. The following tables gives production yield per hectare of wheat of 100 farms of a village.
Converting the given distribution to a more than type distribution, we get
Production Yield (kg/ha) Number of farms
More than or equal to 50 100
More than or equal to 55 100-2 = 98
More than or equal to 60 98-8= 90
More than or equal to 65 90-12=78
More than or equal to 70 78-24=54
More than or equal to 75 54-38 =16
From the table obtained draw the ogive by plotting the corresponding points where the upper limits in x-axis and the frequencies obtained in the y-axis are (50, 100), (55, 98), (60, 90), (65, 78), (70, 54) and (75, 16) on this graph paper. The graph obtained is known as more than type ogive curve.







Comments
Post a Comment